
Using breakpoints to find graphics data
by Bunkai (Jun 2023)

After reading the great tutorial by Labmaster from 24/03/06, which can be found at:
https://www.romhacking.net/documents/361/ . I wanted to port it over to no$gba to use along other
great documents like the one to find gba pointers using no$gba by Phonymike. While also adding a
few quality life additions like screenshots of the full process to help visualize it.

To follow this tutorial, you will need the following:
no$gba: https://problemkaputt.de/gba.htm
yy-chr : https://www.romhacking.net/utilities/119/
Target ROM [The Legend of Zelda, The Minish Cap]. Checksum, crc32: ABCEBBB1

Since this is just a port over and my intention is to use this as a learning experience to do it later
with mGBA, many of the explanations will be short like in the original (many will indeed be copy
pasted), however i will try my best to add links and brief notes on some technical parts where (for
me) Labmasters was too scarce. If you need to expand on, it’s encouraged to read the gba
documentation at https://rust-console.github.io/gbatek-gbaonly/ . If you still have any question
about the process you may ask them in the rhdn forum
https://www.romhacking.net/forum/index.php or in the discord server, using the
proper channels for that, but I won’t answer any private questions about your projects.

Our Target for this guide is the title screen logo from: The Legend of Zelda, The Minish Cap.

First step is to find where the graphics data is in VRAM, and the first place we look is on the
various backgrounds. Open the BG Maps, and see if it's one of the Backgrounds.

https://www.romhacking.net/documents/361/
https://www.romhacking.net/forum/index.php
https://rust-console.github.io/gbatek-gbaonly/
https://www.romhacking.net/utilities/119/
https://problemkaputt.de/gba.htm

In this In this case, it's not, so it must be a sprite. To confirm this, open the OAM viewer and scroll
across until you find the parts of the logo.

A quick background on GBA sprites. The actual graphics are stored at 0x06010000, (OAM data,
which controls position, scaling etc..., is at 0x07000000), that’s why now, you have to open the tile
viewer and select the 0x601000 char base.

You should see the tiles that make up the logo (note the three different palettes used for the red logo,
the green 'Minish Cap' text, and the sword.

So, now we need to figure out where in the ROM this data has come from. Click on one of the tiles
that make up the logo (for this example, we'll use the top-right of the 'Z').

The Tile Viewer will give you the address for this tile – 06013020. Now, we will be using this
information to do our reverse engineering. In addition, we will use the write breakpoints from
no$gba. Which you can do by pressing ctrl+B or following the image below:

After that, a prompt will pop up.
There, you Place a write breakpoint
by typing in: [06013020]!!

This puts a write breakpoint in 06013020, now reset & run the emulation.

It should break thus:

How do we know that this is the right break? If you open the memory viewer and see what
06013020 is whilst on the menu, you'll know that these are the correct values.

So now we need to see what opcode triggered this breakpoint. In the diassembly viewer, go to
080adf3e and scroll up a bit. The instruction that triggered the breakpoint is the one immediately
before, as you can see in the image below:

080adf3c 6090 str r0, [r2, #0x8]
This writes the value in r0 to the address in r02 + 0x8.

Now this is where it's handy to know your GBA IO registers. The address in r02, 0x040000d4, is
one of those that control DMA transfers (https://problemkaputt.de/gbatek.htm#gbadmatransfers).
0X040000D4 + 0x8 is 040000DC, and we're writing a word to it - this actually corresponds to both
the word count register and control register for DMA channel 3. (you can read the reason in the
gbatek link, gbatek is one of the most useful document a GBA hacker could have).

The source register for DMA channel 3 is at 0x040000D4, so take a peek at the value there by using
right clicking as shown in the image below:

And goto: 040000d4

https://problemkaputt.de/gbatek.htm#gbadmatransfers

You can see the result here:

The address value you want is: 08 8d 67 60

Little Endian > denoting or relating to a system of ordering data in which the least significant units
are put first.

You could also do it checking the DMA Registers with:

And see the value here:

This means that, the data has been copied from 088D6760. Note that the next word in memory is
06013000, sounds familiar? It's the destination address (040000d8 is the destination register for
channel 3).

Now, we convert that location into a gba rom memory address by substracting hexidecimal
8000000: 0x088D6760 - 0x8000000 = 0x8D6760 and go to that address in our graphics editor of
preference, for this tutorial we will show the results in yy-chr as an example, below:

Very Important Caveat: Although the steps up to setting the breakpoint will be the same for most
games (though the graphics might be in one of the other Character bases in the tile viewer), the way
the game gets that data into VRAM will differ. Some may use a Software Interrupt (SWI) to copy or
decompress the data from a ROM address - others will have their own functions to decompress
graphics (sometimes directly to VRAM, others into WRAM, then copied into VRAM using DMA
or a SWI, or even with stmia/ldmia opcodes), so it's up to you to figure out what's going on past this
point.

That concludes this brief tutorial, happy hacking and reverse engineering.

- Curiosity leads to knowledge, be curious!

